The Structure of Diacetylruthenocene

By J. Trotter
Department of Chemistry, University of British Columbia, Vancouver 8, B.C., Canada

(Received 12 October 1962)
Crystals of diacetylruthenocene are triclinic with two molecules in a unit cell of dimensions

$$
a=5.73, b=8.15, c=13.70 \AA, \alpha=77.8^{\circ}, \beta=85 \cdot 1^{\circ}, \gamma=69.4^{\circ},
$$

space group $P \overline{1}$. The structure has been determined from Patterson and electron-density projections along the a - and b-axes. The molecular configuration is very close to cis.

In ferrocene (Dunitz, Orgel \& Rich, 1956) and two of its derivatives, dibenzoylferrocene (Struchkov, 1956) and diindenyl iron (Trotter, 1958), X-ray analyses have shown that the five-membered rings are staggered, with substituents in gauche positions. In ruthenocene (Hardgrove \& Templeton, 1959) and bisindenylruthenium (Webb \& Marsh, 1962) on the other hand, the five-membered rings are eclipsed, with the six-membered rings in the latter compound in the cis configuration. The structure of diacetylruthenocene has now been examined to determine its molecular configuration.

The crystals are yellow needles elongated along a, with (010) developed and smaller (001) faces. The cell data were determined from various films and on the G. E. Spectrogoniometer, with single crystal orienter.

Crystal data ($\lambda, \mathrm{Cu} K \alpha=1.5418, \lambda, \mathrm{Mo} K \alpha=0.7107 \AA$). Diacetylruthenocene, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Ru}, M=316 \cdot 0$, m.p. $=$ $149-150^{\circ} \mathrm{C}$.

Triclinic,

$$
\begin{aligned}
& \qquad \quad a=5 \cdot 73 \pm 0 \cdot 01, b=8 \cdot 15 \pm 0 \cdot 01 \\
& \quad c=13 \cdot 70 \pm 0 \cdot 02 \AA ; \\
& \quad \alpha=77 \cdot 8 \pm 0 \cdot 1^{\circ}, \beta=85 \cdot 1 \pm 0 \cdot 1^{\circ}, \gamma=69 \cdot 4 \pm 0 \cdot 1^{\circ} . \\
& U=585 \cdot 5 \AA^{3} . \\
& D_{m} \sim 1 \cdot 8{\mathrm{~g} . \mathrm{cm}^{-3}}_{D_{x}(\text { with } Z=2)=1 \cdot 78 \mathrm{~g} \cdot \mathrm{~cm}^{-3} .}^{F(000)=316 .} \\
& \text { Absorption coefficients for X-rays, }
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=1.5418 \AA, \mu=114 \mathrm{~cm}^{-1} \\
& \lambda=0.7107 \AA, \mu=14.3 \mathrm{~cm}^{-1} .
\end{aligned}
$$

Space group $P 1$ or $P \overline{1} . P \overline{1}$ from structure analysis.
Intensity data for $0 k l$ and $h 0 l$ reflexions were measured with a scintillation counter using Mo $K \alpha$ radiation (Zr filter and pulse height analyser). The ruthenium position was determined from Patterson projections, and the parameters of the other atoms were determined, and all the parameters refined, by successive Fourier and difference syntheses. The final discrepancy factors were $0 \cdot 14$ for 2420 kl reflexions and $0 \cdot 15$ for $164 \mathrm{h0l}$ reflexions (tables of

Table 1. Final positions parameters

Atom	x	y	z
Ru	0.1162	0.1500	0.2396
Cl	0.298	0.026	0.123
2	0.392	0.146	0.162
3	0.194	0.324	0.133
4	0.007	0.293	0.093
5	0.056	0.128	0.087
6	0.142	-0.026	0.388
7	0.226	0.121	0.402
8	0.045	0.271	0.383
9	-0.157	0.239	0.349
10	-0.094	0.045	0.353
11	0.463	-0.165	0.135
12	0.329	-0.223	0.404
13	0.714	-0.262	0.178
14	0.239	-0.354	0.394
Ol	0.384	-0.273	0.113
2	0.530	-0.244	0.441

structure factors are available from the author). The positional parameters are listed, as fractions of the unit cell edges, in Table 1, the final thermal parameters being $B_{\mathrm{Ru}}=2 \cdot 5, B_{\mathrm{C}, o}=4 \cdot 5 \AA^{2}$. The oxygen atoms were distinguished by their distinctly greater peak heights in the Fourier and difference syntheses for both projections.

Fig. 1. Molecular configuration.
The molecular configuration is cis (Fig. l), but with one acetyl group rotated 180° with respect to the other. The angles between corresponding bonds in the
five-membered rings indicate a rotation of only a few degrees (which is however apparent on the a-axis electron-density projection) from the cis configuration.

Accurate molecular dimensions are not available from this two-dimensional study, and since the object was the determination of the molecular configuration, no three-dimensional analysis was carried out. The acetocyclopentadienyl residues are approximately planar and parallel, and the mean molecular dimensions are $\mathrm{Ru}-\mathrm{C}=2 \cdot 18 \AA$ (omitting one very short distance from the averaging), $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}=1 \cdot 41 \AA$, other $\mathrm{C}-\mathrm{C}=1 \cdot 48 \AA, \mathrm{C}=0=\mathrm{I} \cdot 23 \AA, \angle \mathrm{C}-\mathrm{C}-\mathrm{C}$ (in five membered rings) $=108^{\circ}$.

The author is indebted to Dr M. D. Rausch for suggesting the problem and for the crystal sample,
to Dr F. R. Ahmed for kindly making available his IBM 1620 programs, to the staff of the University of British Columbia Computing Centre for assistance, and to the National Research Council of Canada and the President's Research Fund, University of British Columbia, for financial support.

References

Dunitz, J. D., Orgel, L. E. \& Rich, A. (1956). Acta Cryst. 9, 373.
Hardgrove, G. L. \& Templeton, D. H. (1959). Acta Cryst. 12, 28.
Struchkov, Yu. T. (1956). Dokl. Akad. Nauk SSSR. 67, 110.

Trotter, J. (1958). Acta Cryst. 11, 355.
$W_{\text {ebb, N. C. \& Marsh, R. E. (1962). Progr. and Abs. }}^{\text {a }}$ A.C.A. Annual Meeting, Paper H-9.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1963). 16, 572
On the most probable differences occurring in the Lipson-Hesse difference method for indexing
powder photographs. By LEHEL ZsoLDos, Institute for Experimental Physics, L. Eötvös University, Budapest
VIII, Muzeum krt. 6-8, Hungary

(Received 30 May 1962)

During our work we have found that the method described by Hesse (1948) and Lipson (1949) is one of the most powerful for indexing powder photographs with orthorhombic, hexagonal or tetragonal unit cells. But we have learned also that it is very important to know exactly what kind of differences may occur at all.

If we form the differences of the values
$Q_{h k l}=4 \sin ^{2} \theta_{h k l}=h^{2} a^{* 2}+k^{2} b^{* 2}+l^{2} c^{* 2}+2 h k a^{*} b^{*} \cos \gamma^{*}$ $+2 k l b^{*} c^{*} \cos \alpha^{*}+2 h l a^{*} c^{*} \cos \beta^{*}$,
we get in the monoclinic system (1st setting)

$$
\begin{equation*}
Q_{h k l}-Q_{h k l^{\prime}}=N_{3} c^{* 2}, \tag{I}
\end{equation*}
$$

in the orthorhombic system

$$
\begin{equation*}
Q_{h k l}-Q_{h^{\prime} k l}=N_{\mathrm{I}} a^{* 2}, \text { etc. } \tag{II}
\end{equation*}
$$

in the hexagonal system

$$
\begin{align*}
& Q_{h k l}-Q_{h^{\prime} k^{\prime} l}=N a^{* 2} \\
& Q_{h k l}-Q_{h k l^{\prime}}=N_{3} c^{* 2} \tag{IIIb}
\end{align*}
$$

in the tetragonal system

$$
\begin{align*}
Q_{h k l}-Q_{h^{\prime} k^{\prime} l} & =N a^{* 2}, \tag{IVa}\\
Q_{h k l}-Q_{h k l^{\prime}} & =N_{3} c^{* 2}, \tag{IVb}
\end{align*}
$$

in the cubic system

$$
\begin{equation*}
Q_{h k l}-Q_{h^{\prime} k^{\prime} l^{\prime}}=N a^{* 2} \tag{V}
\end{equation*}
$$

where N, N_{1}, N_{2}, N_{3} are integers, the possible values of which (see Table 1) are determined by the Bravais lattice properties. (From these numbers all those which,
in the form $N_{1} a^{* 2}$, can also represent possible values of $Q_{h k l}$ are printed in italics.) It is obvious that there are some forbidden values even for primitive unit cells; $N_{3}=l^{2}-l^{\prime 2}$ cannot be equal to $2,6,10,14, \ldots$ For

Table 1. Possible values of N, N_{1}, N_{2}, N_{3}

Monoclinic

$\mathrm{N}_{3}=1,-, 3,4, \tilde{\text { on }},-, 7,8,9,-, 11,12,13,-, \ldots$ $\mathrm{N}_{3}=4,8,12,16,20,24, \ldots$

Orthorhombic
$P \quad \mathrm{~N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}=1,-, 3,4,5,-, 7,8,9,-, 11,12,13,-, \ldots$
$C \quad \mathrm{~N}_{1}, \mathrm{~N}_{2}=4,8,12,16,20,24, \ldots$
$\mathrm{N}_{3}=1,-, 3,4,5,-, 7,8,9,-, 11,12,13,-, \ldots$
$F, I \quad \mathrm{~N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}=4,8,12,16,20,24, \ldots$
Hexagonal
$H \quad \mathrm{~N}=1,2,3,4, \check{5}, 6,7,8,9,10, \ldots$
$\mathrm{N}_{3}=1,-, 3,4,5,-, 7,8,9,-, 11,12,13,-, \ldots$ $\frac{1}{3} \mathrm{~N}^{3}=1,2,3,4,5,6,7,8,9,10, \ldots$ $\frac{1}{3} \mathrm{~N}_{3}=1,-, 3,4,5,-, 7,8,9,-, 11,12,13,-, \ldots$

Tetragonal
$P \quad \mathrm{~N}=1,2,3,4,5,6,7,8,9,10, \ldots$
$\mathrm{N}=1,2,3,4,5,6,7,8,9,10, \ldots$
$\mathrm{~N}_{3}=1,-, 3,4,5,-, 7,8,9,-11,12,13,-, \ldots$
$I \quad \begin{aligned} & \mathrm{N}^{2}=2,4,6,8,10,12,14,16,18, \ldots \\ & \\ & \mathrm{~N}_{3}=4,8,12,16,20,24,28,32, \ldots\end{aligned}$
$I \quad \begin{aligned} & \mathrm{N}^{2}=2,4,6,8,10,12,14,16,18, \ldots \\ & \\ & \mathrm{~N}_{3}=4,8,12,16,20,24,28,32, \ldots\end{aligned}$
Cubic
P
I
F
P
B

R
$\mathrm{N}=1,2,3,4,5,6,7,8,9,10, \ldots$ $\mathrm{N}=2,4,6,8,10,12,14,16, \ldots$ $\mathrm{N}=1,-, 3,4,5,-, 7,8,9,-, 11, \ldots$

